The developmental expression of the maize regulatory gene Hopi determines germination-dependent anthocyanin accumulation.
نویسندگان
چکیده
The Hopi gene is a member of the maize r1 gene family. By genetic and molecular analyses we report that Hopi consists of a single gene residing on chromosome 10 approximately 4.5 cM distal to r1. Hopi conditions anthocyanin deposition in aleurone, scutellum, pericarp, root, mesocotyl, leaves, and anthers, thus representing one of the broadest specifications of pigmentation pattern reported to date of all the r1 genes. A unique feature of the Hopi gene is that seeds are completely devoid of pigment at maturity but show a photoinducible germination-dependent anthocyanin accumulation in aleurone and scutellum. Our analysis has shown that the Hopi transcript is not present in scutellum of developing seeds but is induced only upon germination and that the simultaneous presence of both C1 and Hopi mRNAs is necessary to achieve A1 activation in scutella. We conclude that the expression pattern of the Hopi gene accounts for the germination-dependent anthocyanin synthesis in scutella, whereas the developmental competence of germinating seeds to induce anthocyanin production in scutella results from the combination of the light-inducible expression of C1 and the developmentally regulated expression of the Hopi gene.
منابع مشابه
Members of the c1/pl1 regulatory gene family mediate the response of maize aleurone and mesocotyl to different light qualities and cytokinins.
We investigated the role of transcription factors (R, SN, C1, and PL) in the regulation of anthocyanin biosynthesis by different light qualities (white, red, blue, and ultraviolet) and by cytokinin in maize (Zea mays). We analyzed anthocyanin accumulation, structural gene expression, and regulatory gene expression in the seed aleurone and the seedling mesocotyl. In the mesocotyl, white, blue, a...
متن کاملThe Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize.
The Viviparous-1 (Vp1) gene is required for expression of the C1 regulatory gene of the anthocyanin pathway in the developing maize seed. We show that VP1 overexpression and the hormone, abscisic acid (ABA), activate a reporter gene driven by the C1 promoter in maize protoplasts. Cis-acting sequences essential for these responses were localized. Mutation of a conserved sequence in the C1 promot...
متن کاملMolecular Analysis of viviparous-1: An Abscisic Acid-Insensitive Mutant of Maize.
The viviparous-1 (vp1) gene in maize controls multiple developmental responses associated with the maturation phase of seed formation. Most notably, mutant embryos have reduced sensitivity to the hormone abscisic acid, resulting in precocious germination, and blocked anthocyanin synthesis in aleurone and embryo tissues. The Vp1 locus was cloned by transposon tagging, using the Robertson's Mutat...
متن کاملGenetic regulation and photocontrol of anthocyanin accumulation in maize seedlings.
The flavonoid pathway leading to anthocyanin biosynthesis in maize is controlled by multiple regulatory genes and induced by various developmental and environmental factors. We have investigated the effect of the regulatory loci R, B, and Pl on anthocyanin accumulation and on the expression of four genes (C2, A1, Bz1, and Bz2) in the biosynthetic pathway during an inductive light treatment. The...
متن کاملNetwork-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 155 1 شماره
صفحات -
تاریخ انتشار 2000